Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

D. Gayathri,^a D. Velmurugan,^a* K. Ravikumar,^b G. Savitha^c and P. T. Perumal^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.056 wR factor = 0.168 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 5-hydroxy-3-(3-methoxybenzoyl)-1',5-dimethyl-2'-oxo-4,5-dihydro-1'*H*-spiro[furan-2(3*H*),3'(2'*H*)-indole]-4-carboxylate

The furan ring in the title compound, $C_{24}H_{25}NO_7$, adopts a twisted conformation. The molecular structure is stabilized by an O-H···O intramolecular hydrogen bonding interaction which generates an S(7) ring motif. The crystal packing is stabilized by C-H···O intermolecular interactions generating C(10) and C(6) chains and centrosymmetric $R_2^2(14)$ motifs.

Comment

2-Hydroxytetrahydrofuran derivatives have calplain-inhibiting activity and are used in the preparation of medicaments for the treatment of inflammatory and immunological diseases, cardiovascular and cerebro-vascular diseases, disorders of the central or peripheral nervous system, cachexia, osteoporosis, muscular dystrophy, proliferative diseases, cataracts, rejection reactions following organ transplants and auto-immune and viral diseases (Auvin *et al.*, 2005). In view of the high medicinal value, we have undertaken the X-ray crystal structure determination of the title compound, (I).

The bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987), except those at the spiro junctions which reflect the presence of the bulky substituents. The sum of the bond angles around atom N1 (360°) indicates sp^2 -hybridiza-

© 2006 International Union of Crystallography All rights reserved Received 22 November 2006 Accepted 24 November 2006

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Figure 2

The packing of (I), viewed approximately down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

tion. The five- (C4/C17/C22/N1/C23) and six-membered (C17-C22) rings in the indole group are planar, with a dihedral angle of $1.8(1)^{\circ}$ between them. Atoms C24 and O7 deviate by 0.004 (3) and 0.055 (2) Å, respectively, from the C4/C17/C22/ N1/C23 plane. The dihedral angle between the two benzene rings (C10–C15 and C17–C22) is 22.5 (1)°. The methoxy group at C14 is twisted slightly away from the C10-C15 benzene ring [torsion angle C15-C14-O6-C16 = $-8.7 (3)^{\circ}$]

The furan ring in the structure adopts a twisted conformation with a pseudo-twofold axis passing through C4 and the C1-C2 bond. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the furan ring are $q_2 = 0.392$ (2) Å, $\varphi =$ 234.6 (2)° and $\Delta_2(C4) = 2.7 (2)^\circ$.

The molecule of (I) is stabilized by an $O-H \cdots O$ intramolecular hydrogen bond, which generates an S(7) ring motif. The crystal structure is stabilized by $C-H \cdots O$ intermolecular interactions (Table 2). Atoms C13 and C21 at (x, y, z) act as donors to atoms O3 and O7 at $(\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z)$, generating C(10) and C(6) chains, respectively. Also, atom C18 acts as a donor to O5 at (2 - x, -y, 2 - z), generating a centrosymmetric dimer of $R_2^2(14)$ motif (Fig. 2)

Experimental

To a solution of 3-[(3-methoxyphenyl)-2-oxoethylidene]-1-methyloxindole (1.02 mmol, 0.3 g, 1 equivalent), ethyl acetoacetate (1.02 mmol, 0.133 g, 1 equivalent) and NaHCO₃ (3.07 mmol, 0.258 g, 3 equivalents) in acetonitrile (10 ml), ceric ammonium nitrate (2.56 mmol, 1.4 g, 2.5 equivalents) dissolved in acetonitrile (5 ml) was added dropwise at 273 K under an N2 atmosphere. The reaction mixture was stirred until the reaction was complete, as monitored by thin-layer chromatography. Water was added to the mixture and the product was extracted into ethyl acetate $(2 \times 20 \text{ ml})$; it was then dried over anhydrous Na₂SO₄. Removal of the solvent under reduced pressure gave a crude product, which was further purified by column chromatography on silica gel, with ethyl acetate-hexane (4:6) as eluent, to afford the pure product (0.322 g, 72%) as a white crystalline solid. Single crystals of the product were obtained by recrystalliztion from ethyl acetate.

Z = 4

 $D_x = 1.329 \text{ Mg m}^{-3}$

 $0.24 \times 0.23 \times 0.21 \text{ mm}$

5057 independent reflections

3819 reflections with $I > 2\sigma(I)$

 $(0.1007P)^2$

 $^{2} + 2F_{c}^{2})/3$

Mo Ka radiation

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 (2) K

Block, white

 $R_{\rm int} = 0.031$

 $\theta_{\rm max} = 28.1^{\circ}$

Cr	vstal	data
<u> </u>	y D LULL	<i>curren</i>

C24H25NO7 $M_r = 439.45$ Monoclinic, $P2_1/n$ a = 8.4860 (12) Åb = 22.446 (3) Å c = 11.5348 (16) Å $\beta = 90.305 \ (2)^{\circ}$ V = 2197.1 (5) Å³

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: none 18459 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) +$
$R[F^2 > 2\sigma(F^2)] = 0.056$	+ 0.2499P]
$wR(F^2) = 0.168$	where $P = (F$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
5057 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e}$
290 parameters	$\Delta \rho_{\rm min} = -0.26$ e
H-atom parameters constrained	

Table 1		
Selected geometric parameters	(Å,	°).

C1-O2	1.411 (2)	C6-O3	1.198 (2)
C1-O1	1.429 (2)	C6-O4	1.334 (2)
C1-C5	1.501 (3)	C7-O4	1.456 (2)
C1-C2	1.545 (2)	C9-O5	1.208 (2)
C2-C6	1.509 (2)	C14-O6	1.370 (2)
C2-C3	1.521 (2)	C16-O6	1.407 (3)
C3-C9	1.521 (2)	C22-N1	1.409 (2)
C3-C4	1.563 (2)	C23-O7	1.217 (2)
C4-O1	1.435 (2)	C23-N1	1.348 (2)
C4-C17	1.504 (2)	C24-N1	1.452 (2)
C4-C23	1.552 (2)		
C23-N1-C22	111.1 (1)	C22-N1-C24	125.0 (2)
C23-N1-C24	123.9 (2)		

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O2-H2A\cdots O7$	0.82	2.17	2.959 (2)	163
$C13-H13\cdots O3^{i}$	0.93	2.53	3.359 (3)	149
C18−H18···O5 ⁱⁱ	0.93	2.55	3.319 (2)	141
$C21 - H21 \cdots O7^i$	0.93	2.60	3.230 (2)	126

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 2, -y, -z + 2.

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C-H = 0.93–0.98 Å, and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $1.2U_{eq}(C)$ for other H atoms.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PARST* (Nardelli, 1995).

The Department of Science and Technology (DST–FIST), Government of India, is acknowledged by DG and DV for providing facilities to the department. DV thanks DST, India, for a major research project and DG thanks CSIR, India, for the award of a Senior Research Fellowship.

References

- Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Auvin, S. & Chabrier De Lassauniere, P. (2005). US Patent No. 222045.
- Bruker (2001). *SMART* (Version. 5.625/NT/2000) and *SAINT* (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.